Poleward Transport of TPX2 in the Mammalian Mitotic Spindle Requires Dynein, Eg5, and Microtubule Flux
نویسندگان
چکیده
TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.
منابع مشابه
Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2
Kinesin-5 is an essential mitotic motor. However, how its spatial-temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification-tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching ana...
متن کاملEg5 Causes Elongation of Meiotic Spindles When Flux-Associated Microtubule Depolymerization Is Blocked
In higher eukaryotes, microtubules (MT) in both halves of the mitotic spindle translocate continuously away from the midzone in a phenomenon called poleward microtubule flux. Because the spindle maintains constant length and microtubule density, this microtubule translocation must somehow be coupled to net MT depolymerization at spindle poles. The molecular mechanisms underlying both flux-assoc...
متن کاملTPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle
Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction do...
متن کاملPoleward transport of Eg5 by dynein–dynactin in Xenopus laevis egg extract spindles
Molecular motors are required for spindle assembly and maintenance during cell division. How motors move and interact inside spindles is unknown. Using photoactivation and photobleaching, we measure mitotic motor movement inside a dynamic spindle. We find that dynein-dynactin transports the essential motor Eg5 toward the spindle poles in Xenopus laevis egg extract spindles, revealing a direct i...
متن کاملLamin B Counteracts the Kinesin Eg5 to Restrain Spindle Pole Separation during Spindle Assembly*
Lamin B is a component of the membranous spindle matrix isolated from Xenopus egg extracts, and it is required for proper spindle morphogenesis. Besides lamin B, the spindle matrix contains spindle assembly factors (SAFs) such as Eg5 and dynein which are known to regulate microtubule organization and SAFs known to promote microtubule assembly such as Maskin and XMAP215. Because lamin B does not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2010